Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DOUBLE1(s1(x)) -> DOUBLE1(x)
PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> MINUS2(x, y)
PLUS2(s1(x), y) -> DOUBLE1(y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
PLUS2(s1(plus2(x, y)), z) -> PLUS2(plus2(x, y), z)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLE1(s1(x)) -> DOUBLE1(x)
PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> MINUS2(x, y)
PLUS2(s1(x), y) -> DOUBLE1(y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
PLUS2(s1(plus2(x, y)), z) -> PLUS2(plus2(x, y), z)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DOUBLE1(s1(x)) -> DOUBLE1(x)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


DOUBLE1(s1(x)) -> DOUBLE1(x)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
DOUBLE1(x1)  =  DOUBLE1(x1)
s1(x1)  =  s1(x1)

Lexicographic Path Order [19].
Precedence:
s1 > DOUBLE1


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS2(s1(x), s1(y)) -> MINUS2(x, y)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
MINUS2(x1, x2)  =  MINUS1(x1)
s1(x1)  =  s1(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
PLUS2(s1(plus2(x, y)), z) -> PLUS2(plus2(x, y), z)
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
PLUS2(s1(plus2(x, y)), z) -> PLUS2(plus2(x, y), z)
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
PLUS2(x1, x2)  =  PLUS2(x1, x2)
s1(x1)  =  s1(x1)
plus2(x1, x2)  =  plus2(x1, x2)
minus2(x1, x2)  =  x1
double1(x1)  =  double1(x1)
0  =  0

Lexicographic Path Order [19].
Precedence:
[PLUS2, plus2] > double1 > s1


The following usable rules [14] were oriented:

plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))
plus2(s1(plus2(x, y)), z) -> s1(plus2(plus2(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.